Band 2 6el Broadband Yagi

By G8MNY (Corrected Feb 13) (8 Bit ASCII graphics use code page 437 or 850, Terminal Font)

On looking at an old large well made home-made 6el broadcast Yagi beam (scrap) as a starting point, I decided to re-model it using the MMANA-GAL program (CD in 2010 RSGB yearbook & online). It showed it to be rubbish as it was!

The community radio station I put on, is too far away to hear at my home, so I needed a very good aerial. I wanted it to do well over the whole 20MHz of UK's Band 2 87.5-108MHz, with good Front to Back ratio & have some useful gain.

Using the MMANA-GAL optimisation options over frequencies near the edge of the band, I ended up with this, quite acceptable compromise in $20\,\mathrm{mm}$ ally tube for the elements, & boom was $40\,\mathrm{mm}$ dia & $2.54\,\mathrm{m}$ long!

Freq	Gain	F/B	R	J	
88	7.9	14.5	97	-4	~~
90	7.7	12.8	146	41	/
92	7.6	11.7	198	71	Typical Ì ¦
94	7.7	11.1	252	86	polar \ /
96	7.8	11.0	308	82	diagram \/
98	8.0	11.0	355	52	across > · <
100	8.3	11.3	375	-2	whole ()
102	8.6	11.7	346	-64	band
104	9.0	12.4	263	-89	
106	9.6	13.6	165	-49	
108	10.1	15.6	87	47	

AERIAL Z

The impedance of this folded dipole feed point is approx. $300\hat{U}$ balanced over most of the band. This is not normal as a folded dipole increases the impedance by 4 & the reflector & director usually reduces it by 4, resulting the usual $75\hat{U}$. But this design is optimised for bandwidth, so we to do extra matching, to get $75\hat{U}$. I used a small centre tapped VHF 2 hole ferrite bread as the balun, with 2x 2 turns on thr middle core if it, all in the connection box.

OG4APL GB7CIP 20.5.2013

Z MEASUREMENTS

Using an MFJ analyser, the match to $75\hat{\mathbb{U}}$ is pretty good over most of the band as predicted by the model. I hope when I put it up on a rotator it works as predicted too.

IN USE

This works well $75\hat{\text{U}}$ SWR was quite flat as above. But now regret I did not designed it to be a spot frequency narrow band 1MHz wide aerial, as that would give 2-3dB more gain & > 22dB F/B ratio. The back of the beam QRM is the main problem I have!

See My Tech Bul "Band 2 6el Narrowband Yagi" version!

Why don't U send out an interesting bul?

73 De John, G8MNY @ GB7CIP /EX

OG4APL GB7CIP 20.5.2013